Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus.
نویسندگان
چکیده
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.
منابع مشابه
Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
The hyperthermophilic archaebacterium Pyrococcus furiosus produces several amylolytic enzymes in response to the presence of complex carbohydrates in the growth medium. These enzyme activities, alpha-glucosidase, pullulanase, and alpha-amylase, were detected in both cell extracts and culture supernatants. All activities were characterized by temperature optima of at least 100 degrees C as well ...
متن کاملRole of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
Polysulfides formed through the breakdown of elemental sulfur or other sulfur compounds were found to be reduced to H(2)S by the hyperthermophilic archaebacterium Pyrococcus furiosus during growth. Metabolism of polysulfides by the organism was dissimilatory, as no incorporation of S-labeled elemental sulfur was detected. However, [S]cysteine and [S]methionine were incorporated into cellular pr...
متن کاملPurification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. The purified preparation c...
متن کاملCloning, expression, and molecular characterization of the gene encoding an extremely thermostable [4Fe-4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.
The gene for ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, sequenced, and expressed in Escherichia coli. The coding region confirmed the determined amino acid sequence. Putative archaeon-type transcriptional regulatory elements were identified. The fdxA gene appears to be an independent transcriptional unit. Recombinant ferredoxin was indistinguishable from the ...
متن کاملBiochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus.
The hyperthermophilic archaeon Pyrococcus furiosus possesses a modified Embden-Meyerhof pathway, including an unusual ADP-dependent glucokinase (ADP-GLK) and an ADP-dependent phosphofructokinase. In the present study, we report the characterization of a P. furiosus galactokinase (GALK) and its comparison with the P. furiosus ADP-GLK. The pyrococcal genes encoding the ADP-GLK and GALK were funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 9 شماره
صفحات -
تاریخ انتشار 1989